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PARTIAL WAVE CALCULATION
OF THE DIATOMIC

MOLECULE (HeH)**

by
Harris Rabinovich
Goddavrd Space Flight Centev

SUMMARY

The solutions to the Schrodinger equation for the diatomic
molecule (HeH)++ in the Born-Oppenheimer approximation have
been expanded in a series of partial waves and radial equations
have been derived. These radial equations have been solved nu-
merically for the first three orders of approximation and the
energy eigenvalues and wavefunctions have been obtained for
seven different = states at various values of the internuclear sep-
aration. The numerical wavefunctions have been used to calculate
dipole transition integrals and dipole moments.
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PARTIAL WAVE CALCULATION
OF THE DIATOMIC
MOLECULE (HeH)*+

by
Harris Rabinovich
Goddard Space Flight Center

INTRODUCTION

This paper contains an approximate calculation of the eigenvalues, eigenfunctions, and dipole
transition integrals of the diatomic molecule (HeH)++ in the Born-Oppenheimer approximation.
The method involves expanding the molecular wavefunctions in a series of partial waves about the
charge center of the molecule. Although this approach is capable of yielding extremely precise
results, this study was carried out with the intention of investigating how rapidly various orders
of the approximation converge to the exact results and to what extent these approximate results
display the qualitative features of the physics. This particular calculation is interesting because
although previous calculations exist they are all restricted to (H2)+ which is homonuclear, whereas
(HeH)" 7 is, of course, heteronuclear (References 1, 2, and 3). In addition, a number of new results
are presented. These include the approximate eigenvalues of two Z-states, the dipole moments for
these states and others, and a large number of dipole transition integrals.

THEORY

The partial wave theory is a particular form of single center expansion. In this case the
charge center is chosen as the origin and the wave function is expanded about this point. The
motivation for this choice of origin is simply the fact that the forces are strictly Coulombic and
the charge center is the point on the z-axis (taken as the internuclear axis) which has the greatest
dynamical symmetry with respect to the potential. For example, when the electron is far from the
nuclei, the nuclei behave like a single particle of charge +3 located at the charge center.

If A and B denote the helium and hydrogen nuclei, respectively, then in the Born-Oppenheimer
approximation the Hamiltonian can be written as
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(Here, and throughout this paper, lengths are in Bohr radii (0.5293) and energies in rydbergs
(13.605 eV)). Having defined the origin and the z-axis, the next step is to expand the cosine law
form of the electronic potentials in a series of Legendre polynomials about the charge center.

This yields

H = -V2 - ZVP (cos 6) + jB ’ (2)

where
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Except where specifically noted all the energy eigenvalues given include the internuclear potential.

The partial wave theory (Reference 1) starts with the expansion of the wave function in an in-
finite series of partial waves. For a given magnetic state, M, such an expansion is

by Z @p (1) Yg, (D) - (6)
£

If we insert Equation 6 into the Schrodinger equation and integrate over the angular variables, the
result is an infinite set of coupled second-order differential equations:

a2 4t+1
{dr (rz ) + E + :l (I),{?/(r) + Z 2m+1 {Mmoan)n (r) = 0. (7)

CH°¥ is simply an integral of the product of three spherical harmonics:

C/E':?nM = j [Y/EM Q) Yoo DY,y (Q):I do . (8)




Up to this point the solutions are exact. The approximation consists of replacing the infinite
series of partial waves with a finite number of partial waves. Convergence of successive orders
of the approximation is insured by the presence of the centrifugal barrier, -£(£ + 1)/r2, which de-
presses the magnitude of higher angular momentum terms in the region of the interaction (Refer-
ence 1). It can easily be shown that the variational determination of the @4 (r)’s is equivalent to
solving the set of equations

EYEM@)H\/JMdQ = E@g(r), 4 = 0,1, ---L . (9)
This is true for any order of the approximation. As a result the integral,
J(sb*Hsb) dr (10)

will be a minimum for the ground state and an extremum for any excited state. Since the eigen-
functions of a particular order are the eigenfunctions of a Hermitian operator they are orthogonal
as long as the eigenvalues are nondegenerate. The wave function for the pth order approximation
contains p + 1 terms and yields a set of p+ 1 coupled differential equations for each of the three
regions of configuration space. The zeroth-order approximation corresponds to approximating the
two separate Coulomb potentials by a truncated Coulomb potential of charge +3 located at the charge
center. This approximation is pictured in Figure 1.

Several important properties of the approximate calculation can be deduced by examining the
radial equations. For simplicity we will discuss the first order approximation. The first order
wavefunction for = states is

@, (r) ®, (1)
= Y, T Yy - (11) Vo)
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From Equation 9 we get a pair of coupled
differential equations for each of the three
regions of configuration space. In the united
atom limit, R,; - 0, the situation is described by
the pair of equations which are wvalid for
r>2/3R,, . At the limit, this pair of equations
reduces to radial parts of the Schrodinger equa-
tion for the 4 = 0 and © = 1 states of the doubly
ionized lithium atom. Hence the first-order

e A e N

approximation excludes all solutions which do Figure 1—Exact Coulomb potential and the zeroth-order

not correspond to either s or p states in the approximation for R,p = 1.



united-atom limit. Therefore, a molecular d-state, united-atom designation, will be excluded in
first-order, and in order to calculate it a second-order calculation is necessary. Infinite separa-
tion of the nuclei produces a situation in which the equations valid for r <1/3R,, are significant.

In this limit the equations reduce to the radial portion of the Schrodinger equation for the free elec-
tron with either zero or unit angular momentum. At this point any calculation which uses a finite
approximation yields incorrect results since the actual situation corresponds to either an alpha
particle and a hydrogen atom or a singly ionized helium atom and a proton.

The differential equations which were derived in the previous paragraphs have been solved nu-
merically. The method is an iterative procedure which involves integrating outward from the
origin, while simultaneously integrating inward from some suitably chosen large value of the radius.
At some intermediate value of the radius the solutions and their derivatives are matched. This
technique was designed by L. Fox and is described in the appendix of a paper by Cohen and Coulson
(Reference 2) and in a separate article by Fox (Reference 4). The calculations were performed on
the IBM 7094 computer at the Theoretical Division of the Goddard Space Flight Center.

RESULTS

Calculations have been performed for six £ states of the molecule. In the united-atom designa-
tion they are the 1so, 2po, 2s0, 3po, 3do and 3so states. In the separated atom designation these
same states correspond to the o(1s)He™, o(1s)H, o (2s, 2pz)He+, o(2s, 2pz)H, o(2s, 2pz)He+, and
o (3s, 3p, » 3clz)HeJr states respectively. Table 1 contains the complete results of the eigenvalue
calculations. Resulis for those = states which have been calculated exactly are included (Refer-
ence 5). Figure 2 is a graph of the potential energy of the ground state as a function of R, . The
minima which appear in the potential energy curve in this case are spurious. Since the approxima-
tion reduces to a free-electron Hamiltonian for infinite separation, as described previously, any
state which has a negative potential energy will show a minimum in its potential energy curve (Ref-
erence 1). The convergence of succeeding orders of the approximation is quite apparent. Figures
3 and 4 are graphs of the electron energy of the first five excited sigma states. The nuclear re-
pulsion has been removed in order to show certain features. Notice that all states converge to

their proper united-atom limits.

On the surface we might be tempted to test the results of these eigenvalue calculations with
the provisions of the Hylleraas-Undheim theorem (Reference 6). This theorem establishes certain
inequalities between the eigenvalues of successive orders of approximation of a variational calcu-
lation which is very similar to this one. In the Hylleraas-Undheim calculation the wave function is
expanded in a complete set of functions with undetermined coefficients. The approximation con-
sists of using a finite number of these functions and performing the variation on their coeificients.
Hylleraas and Undheim show that if the eigenvalues of any order h are numbered calling the ground
state E, , the first excited state E,, and the rest accordingly, then, E(") >E ®"*1) >E ("), The second
order 3ps and 3do eigenvalues violate the theorem between R,, = 1.5 and R,; = 3. However, this
calculation satisfies conditions which are only similar and not identical to those of the Hylleraas-
Undheim theorem. The difference is that in order to prove the inequalities between the eigenfunctions,
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State

1so
2po
2s0
3po
3do
3so

lso
2po
2s0
3po
3do
3so

1so
2po
2s0
3po
3do
3so

1so
2po
2s0
3po
3do
3so

1so
2po
2s0
3po
3do
3so

1sco
2po
2s0
3po
3do
3so

1so
2po
2s0
3po
3do
3so

Table 1

Energy Eigenvalues.

Zeroth Order

7.7871

13.8513

15.0303

0.8488

5.9970

7.0750

~0.9424

3.4598

4,4492

-1.5831

2.2359

3.1512

-1.8895

0.5385

1.2533

-1.6717

0.0612

0.6551

-1.4584

-0.1358

0.3741

First Order

7.7692
13.7129
13.8491
14,9892

15.0297

0.7815
5.6121
5.9899
6.9617

7.0730

~1.0772
2.8250
3.4463
4.2673

4,4453

-1.7895
1.4065
2.2157
2.9202

3.1456

-2.3257
~0.4486
0.4971
0.9737

1.2423

-2.2044
-0.7463
0.0068
0.3924

0.6403

-2,0094
-0.7701
-0.1987

0.1286

0.3559

o

Second Order Exact
7.7365 7.7327
13.7128 13.7125
13.8451 13.8446
14,9891
14.9984 14,9984
15.0285
0.6868 0.6689
5.6109 5.6045
5.9784 5.9761
6.9612
6.9935 6.9935
7.0695
-1.2300 -1.2694
2.8187 2.7870
3.4283 3.4232
4.2652
4,3184 4,3181
4,4400
-1.9952 -2.0667
1.3915 1.3233
2.1924 2.1838
2.9156
2.9728 2.9716
3.1386
-2.6955 -3.0244
-0.4876 -0.6903
0.4551 0.4258
0.9654
0.8911 0.8575
1.2309
-2.6586 -3.3376
-0.7849 -1.0243
-0.0634 -0.1101
0.3924
0.1625 0.0176
0.6223
-2.4931 -3.5012
-0.8028 -1.0622
-0.3152 -0.3620
0.1428
-0.1463 -0.4137
0.3262
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the Hylleraas- Undheim theorem is restricted to a fixed set of basis functions, whereas in this cal-
culation the basis functions, the & (r)’s, change in each order of approximation. Empirically, a

modified form of the Hylleraas-Undheim theorem appears to hold; namely, that E( > E ("*3, pro-
vided one interprets the n’s correctly. Since the approximate energy curves in the same order
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approximation may cross each other, the nth

eigenvalue may refer to different spectral terms
for different values of R,,. For instance at
R, = 1l in the second order approximation the
3po state lies lower than the 3do state and cor-
responds to E,, the third excited state, while the
3do state corresponds to E,, the fourth excited
state. At R,, = 4, the 3do state lies below the
3po state and corresponds to E; while the 3po
state corresponds to E,. This results from the
fact that the second order 3pc and 3do states

cross each other at R,; slightly less than 2. By
interpreting the n’s in this manner the condition
that ™ >E ("*D is fulfilled for all calculated

results.

Dipole transition integrals were calculated
using both the dipole length, Equation 12, and

-0.50
0,60 £@
-0.70[-
-0.80f~

-0.90—

ydbergs)

= -1.00-

-1.101—

ENERGY

-1.20-

-1.30
E(3d) EXACT

-1.401—

-1-305 1.00 2.00 3.00 4.00

Rap (Bohr radii)

Figure 4—3po, 3do, and 3so electronic energies versus
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the dipole velocity, Equation 13, formulations:

Q = jw:‘ fiy, dr (12)

and

2 2
Q = (Ea_Eb)j‘vL/ja*\/Jb dr = - (Ea‘Eb)jllla*v¢,b dr . (13)

Table 2 includes both the approximate and exact (References 7 and 8) values of the dipole integrals.
The dipole velocities were calculated using both forms of Equation 13 and all values agree within
0.5%. Figures 5, 6, and 7 depict the 2po-2so, 2po-3de, and the 1so-3do transitions. If ¥, = ¢, in
Equation 12 then the zth component of this integral is the dipole moment. Table 3 contains a list
of the approximate and exact dipole moment calculations (References 9 and 10). The dipole mo-
ment of the 2pc and 3pc states is measured with respect to the proton and the dipole moment of the
remaining states is measured with respect to the alpha particle. The signs in Table 3 refer to the
vector direction of the dipole moment and are to be interpreted in the normal sense. Figures 8
and 9 are graphs of the dipole moment for the 1so and 2pc states.

We shall discuss all the calculations simultaneously so as to unify the discussion. This is
particularly easy since the discrepancy between the exact and approximate results is due to a
single cause, namely, the attempt to use a finite number of terms of the potential expansion about
the charge center in place of the exact electronic potentials. For small internuclear separations,
the electronic Coulomb potential wells coalesce and they can be approximated easily. Even the
zeroth-order calculations are good, although in zeroth order the potential approximation is only a
truncated Coulomb potential. As the internuclear gseparation increases the Coulomb potential wells
separate and we are faced with trying to approximate the singularities of the two separate wells.
In the higher order approximations the approximate potential possesses kinks which represent the
singularities. However as R,, increases, the magnitudes of the kinks decrease and they become
poorer approximations to the singularities. Finally, as we stated previously, our approximate
equ%tions describe a free electron, whereas we really have an alpha particle and a hydrogen atom,
or a singly ionized helium atom and a proton. This situation can be improved by using a greater
number of terms to approximate the potential. The real question is, to what extent do the approx-
imate results correspond to the exact results. The energy eigenvalues are within 6% of the exact
values up to R,; = 1 in the second-order approximation. This 6% discrepancy is for the ground
state and represents the largest error at this point. The energy eigenvalues of the excited states
are more accurate because these states have their maximum probability density in regions where
the potentials are small and well represented. As a result the integral of the potential energy and
its concomitant error are both reduced in magnitude.

In general one expects that increasing the order of approximation leads to a better represen-
tation of the potential and would extend the range of R,; which produced valid results. This is



Table 2

Dipole Transition Integrals.

1st Order 1st Order 2nd Order 2nd Order Exact
Transition Rap Dipole Dipole Dipole Dipole Value
Length Velocity Length Velocity
1so-2po
0.00 0.248
0.25 0.290 0.293 0.289 0.289 0.289
0.50 0.356 0.376 0.360 0.359 0.360
0.75 0.412 0.463 0.427 0.423
1.00 0.450 0.539 0.474 0.464 0.474
2.00 0.443 0.681 0.488 0.441 0.417
3.00 0.355 0.690 0.425 0.350 0.263
4.00 0.280 0.685 0.386 0.294 0.168
1so-2s0
0.00 0.000
0.25 0.017 0.017 0.017 0.017 0.017
0.50 0.036 0.037 0.038 0.038 0.038
0.75 0.058 0.061 0.063 0.062 0.063
1.00 0.080 0.087 0.089 0.088 0.092
2,00 0.163 0.176 0.192 0.187 0.181
3.00 0.224 0.228 0.293 0.301 0.217
4.00 0.295 0.258 0.378 0,432 0.231
lso-3po
0.00 .050
0.25 0.108 0.109 0.108 0.108
0.50 0.110 0.119 0.114 0.113
0.75 0.099 0.118 0,106 0.105
1.00 0.082 0.110 0.091 0.088
2.00 0.051 0.104 0.051 0.039
3.00 0.057 0.135 0.044 0.021
4.00 0.072 0.175 0.050 0.013
1so-3do
0.00 0.000
0.25 0.003 0.003 0,003
0.50 0.009 0.009 0.009
0.75 0.020 0.019 0.019
1.00 0.036 0.035 0.035
2.00 0.125 0.143 0.157
3.00 0.146 0.211 0.258
4,00 0.048 0.157 0.282
1so-3so
0.00 0.000
0.25 0.007 0.007 0.007 0.007
0.50 0.016 0.016 0.016 0.016
0.75 0.025 0.027 0.027 0.027
1.00 0.034 0.038 0,038 0.037
2.00 0.070 0.076 0.079 0.076
3.00 0.097 0.099 0.111 0.111
4.00 0.119 0.111 0.131 0.144




Transition

2po-2sc

2po-3po

2po-3do

2po-3so

250-3po

AB

0.00
0.25
0.50
0.75
1.00
2.00
3.00
4,00

0.00
0.25
0.50
0.75
1.00
2.00
3.00
4.00

0.00
0.25
0.50
0.75
1.00
2.00
3.00
4.00

0.00
0.25
0.50
0.75
1.00
2.00
3.00
4.00

0.00
0.25
0.50
0.75
1.00
2.00
3.00
4.00

Table 2 (continued)

Dipole Transition Integrals.

1st Order
Dipole
Length

0.977
0.895
0.785
0.688
0.543
0.597
0.745

0.047
0.087
0.118
0.142
0.215
0,285
0.353

0.113

0.010
-0.063
-0.100
-0.128
-0.134
-0,132

0.707
0.907
1.081
1.192
1.276
1.248
1.245

ist Order 2nd Order 2nd Order
. R R Exact
Dipole Dipole Dipole Value
Velocity Length Velocity
1.000
0.972 0.977 0.972 0.977
0.899 0.895 0.889 0.891
0.789 0.781 0.774
0.685 0.677 0.668 0.641
0.469 0.506 0.519 0.341
0.391 0.604 0.781 0.209
0.362 0.863 1.441 0.135
0.000
0.047 0.030 0.030
0.088 0.056 0.055
0.119 0.076 0.074
0.144 0.091 0.086
0.220 0.174 0.147
0.284 0.236 0.157
0.333 0.305 0.150
0.817
0.793 0.796 0.794
0.732 0.743 0.736
0.670 0.694
0.632 0.676 0.630
0.670 0.866 0.731
0.713 1,118 0.948
0.626 1.140 1.141
0.181
0.113 0.115 0.116
0.009 0.017 0.017
-0.065 ~0,054 -0,052
-0.100 -0.088 -0.085
-0.104 -0.096 -0.093
~-0.074 -0.074 -0.089
-0.038 -0.039 -0.075
0.590
0.709 0.705 0.704
0.919 0.905 0.904
1.112 1.087 1.084
1.249 1.209 1.204
1.464 1.328 1.320
1.605 1.369 1.370
1.806 1.385 1.361




Transition

250-3do

0.00
0.25
0.50
0.75
1.00
2.00
3.00
4.00

280-380

0.00
0.25
0.50
0.75
1.00
2.00
3.00
4.00

3po-3do

0.00
0.25
0.50
0.75
1.00
2.00
3.00
4.00

3po-3s0

0.00
0.25
0.50
0.75
1.00
2.00
3.00
4.00

3do-3so

0.00
0.25
0.50
0.75
1.00
2.00
3.00
4.00
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Table 2 (continued)

Dipole Transition Integrals.

1st Order
Dipole
Length

0.052
0.106
0.159
0.208
0.352
0.431
0.483

2.399
2.221
1.978
1,761
1.395
1.412
1.559

1st Order
Dipole
Velocity

0.052
0.107
0.161
0.212
0.363
0.451
0,502

2.387
2.224
1,988
1,771
1.362
1.306
1.358

2nd Order
Dipole
Length

0.040
0.086
0.132
0,172
0.222
-0.299
-1.164

0,054
0.112
0.172
0.231
0.436
0.564
0.503

1.732
1.726
1.705
1.667
1.314
0.821
0.347

2.403
2.235
2.001
1.789
1.450
1.649
2,116

0.058
0.106
0.134
0.137
0.019
-0.350
-0.796

2nd Order
Dipole
Velocity

0.040
0.087
0.136
0.182
0.306
0.017
-0.525

0.054
0.112
0.172
0.231
0.438
0.572
0.503

1,734
1,730
1.710
1.671
1.357
0.786
0.217

2.394
2.229
1.994
1.780
1,462
1.771
2.491

0.059
0.107
0.136
0.141
0.033
-0.347
-0.843

Exact
Value

0.000
0.040
0.085
0.137
0.199
0.343
0.322
0.026

0.000

1.732

2.452

0.000




1.00—

0.75—

TRANSITION INTEGRAL (Bohr radii)
o
o
S
I

olL. [ | [
0 1.00 2.00 3.00 4.00

R ag (Bohrradii)

Figure 5~2po-2s0 dipole transition integral versus R, .
Q is exact result, Q (?) is second-order dipole length,
and Q (") is first-order dipole velocity.

borne out by the calculations of the energy
eigenvalues, the dipole moments, and some of
the transition integrals. For the remaining
transition integrals the situation is not clear-
cut. Checking the 2po-2so transition atR,, = 3
and 4 in Figure 5, we find that the first-order
results are superior to the second-order re-
sults. For smaller values of R,; the situation
reverses. Unfortunately, energy minimization
is not sufficient to produce good wave functions
at this level of approximation in this region. It
is therefore necessary to calculate at a higher
order of approximation where the potential
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Figure 6—2po~-3do dipole transition integral versus R, ..
Q is exact result, Q(2) is second-order dipole length,
and Q@ is second-order dipole velocity.
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Figure 7—1s0-3do dipole transition integral versus R, .
Q is exact result, Qf?) is second-order dipole length,
and Qv(z) is second order dipole velocity,

representation will be improved. Energy minimization, the solution of the set of coupled differen-

tial equations, will include coupling from the newly added higher order terms back to the previously

included terms and better wave functions will result. Hence a certain amount of caution must be
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Table 3

Dipole Moments.

Rap
STATE
0.25 0.50 0.75 1,00 2.00 3.00 4.00

1so . ” o .

First Order 0.078 0.138 0.179 0.202 0.242 0.328 0.461

Second Order 0.078 0.137 0,172 0,186 0.157 0.162 0.214

Exact 0,137 0,180 0.088 0.035 0.018
2po

First Order -0.046 -0.110 -0.188 -0.269 -0.577 -0.953 -1.407

Second Order -0.041 -0.089 -0.144 -0.198 -0.400 -0.672 -1.009

Exact -0.092 -0.191 -0.325 -0.509 -0.657
250

First Order -0.050 -0.110 -0.180 -0.248 -0.422 -0.429 -0.326

Second Order -0.051 -0.124 -0.211 -0.304 -0.652 -0.801 -0.336
3po

First Order 0.155 0.267 0.330 0.361 0.288 -0.034 -0.528

Second Order 0.084 0.145 0.172 0.169 0.124 -0.262 -0.772
3do

Second Order 0.166 0.331 0.495 0.658 1.147 1.545 1.446
350

First Order -0.254 -0.513 -0.757 -0.971 -1.466 ~-1.543 -1.443

Second Orde;' -0.265 -0.548 -0.832 -1,102 -1.956 -2.353 -1.803

used before using values of the dipole transition integral calculated at values of R,, greater

than unity.

CONCLUSION

By expanding the wave function in a series of partial waves and expanding the electronic po-
tentials in a series of Liegendre polynomials, we have derived a set of coupled differential equations
which describe the radial functions which are the coefficients of the partial waves in the expansion.
These equations have been solved numerically using a high-speed computer. For the second-order
approximation the results are accurate up to R,, = 1. In addition the dipole moments and dipole
transition integrals are also accurate up to this point. The strengths of this method are that at
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Figure 9—2po dipole moment versus R,,. Q is the exact
Figure 8—1so dipole moment versus R,z. Q is the exact result, and Q1) is the first order dipole moment.
result, and Q") is the first order dipole moment.

every order of approximation the eigenvalues are extrema and the eigenfunctions are orthogonal.
Also it is possible to calculate all the eigenvalues and eigenfunctions of a given order and symmetry
from the same computer program (Reference 1). The weaknesses of the method are that approxi-
mation becomes poorer as R,, is increased, and in order to improve the accuracy it is necessary
to calculate higher orders of the approximation.
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